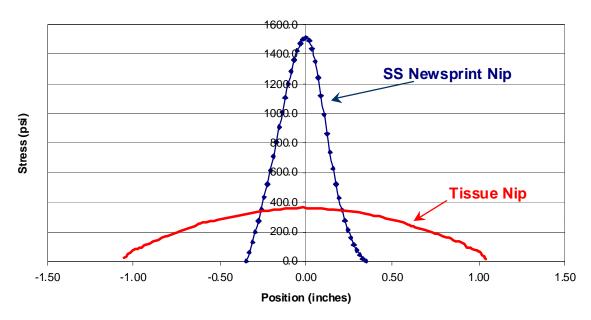
Nip Dewatering A Press Fabric Perspective

May 4, 2011 PaperCon 2011

John Neun – Albany International

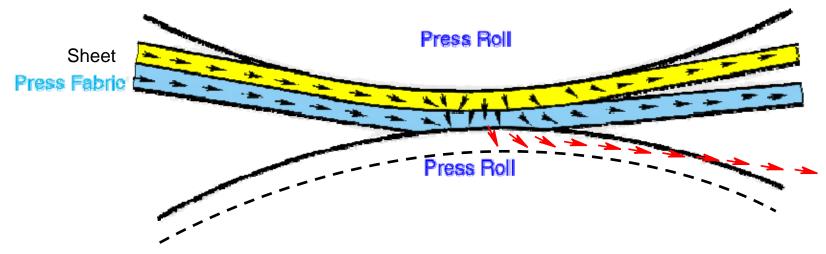


Outline

- Introduction
 - Press Dewatering Principles
 - Nip Dewatering
- The Role of the Fabric in Nip Dewatering
- Fabric Design
 - Parameters
 - Tools

Nip Width and Pressure

- $P_{NIP} = P_{mechanical} + P_{hydraulic}$
- P_{mechanical}
 - Press load
 - Nip width (roll covers, felt)
- P_{hydraulic}
 - Felt void volume
 - Water content



Press Dewatering: Basic Physics

- Water movement occurs only with pressure differential
- Pressure must be higher in sheet than felt
- If hydraulic pressure exists, saturation must exist
 - There must be a continuum of fluid
- Therefore, to achieve fluid movement:
 - Voids must exist in the felt, OR
 - Voids must exist "beyond" the felt (slots/grooves in roll), OR
 - Water must flow in MD or CD (felt is permeable in every direction),
 OR
 - The sheet explodes (crushing)

Pressing and Felts

Press fabric function

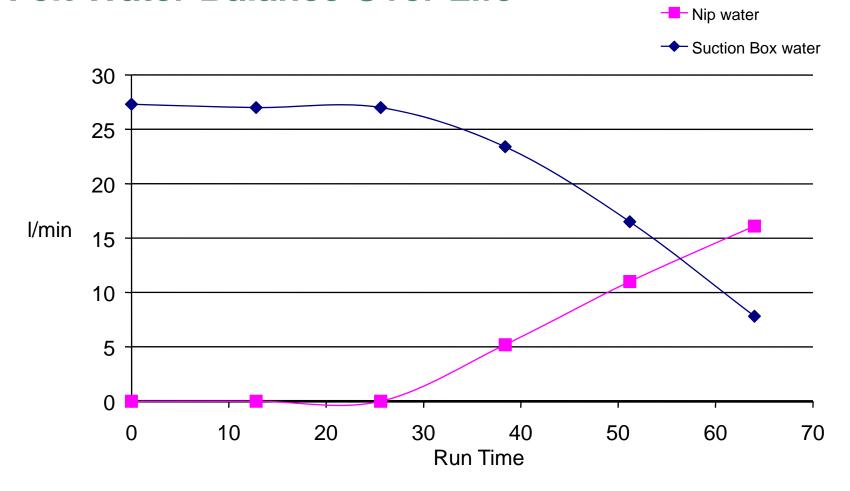
- Accept water from sheet
- Other stuff (impart finish, convey sheet, transmit power)

Nip dewatering

- Independent flow exits out of the nip
- Water passes through felt out of nip

Pressure and flow depend on

- void volume
- Compressibility
- permeability



Nip Dewatering vs. Uhle Dewatering

- Water is expressed form the sheet into the felt at the press
- Water is given up by the felt
 - At the nip (water volume beyond saturation passes through the felt)
 - Water goes through the felt
 - Permeability is very important: flow resistance
 - Compressibility and void volume determine saturation point
 - At the uhle box (water carried from nip to uhle box)
 - Water enters sheet side of felt and exits from same side
 - Void volume determines capacity of felt
 - Permeability determines air flow → uhle dewatering efficiency
- Nip dewatering benefits
 - Improved press solids (more efficient pressing)
 - Profile improvements (more even pressing)
 - Cleaner felts (better "flushing")

Felt Water Balance Over Life

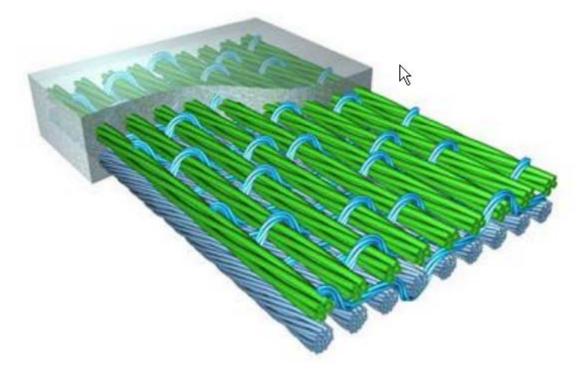
 Felt compressibility, permeability, and void volume all change over life

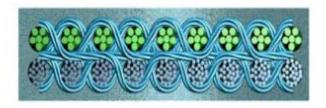
Felt Design Objectives

- Steady State Pressing
 - Achieve some saturation point in the nip early in felt life
 - Enough water to achieve hydraulic pressure
 - Little enough water to avoid crushing
 - Maintain some uhle flow
 - Help clean fabric and prevent filling
 - Control felt water balance

How Much Water?

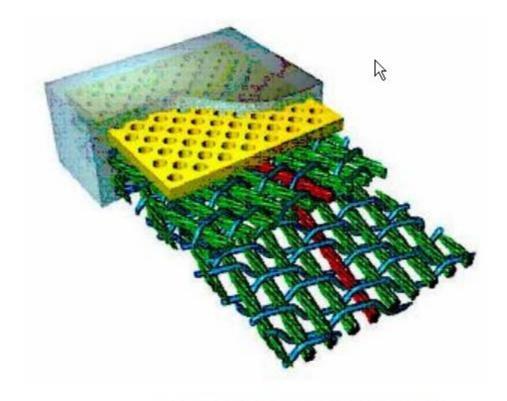
- Optimal water content for nip dewatering depends on
 - Felt
 - Sheet
 - Belt/Roll venting
 - Nip Load
 - Nip Profile
 - Is unique to every press
- Uhle systems can moderate water to the nip
 - Too much → nip rejection, crushing
 - Too little → sub-optimal nip dewatering

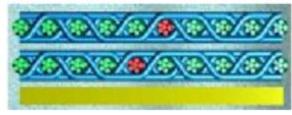

Felt Design and Nip Dewatering


- There are three options to enhance nip dewatering with felt design.
 - Balance life and startup performance
- 1. Reduce permeability and void volume
 - Retard uhle dewatering
 - Enhance nip saturation with minimal void volume
 - Densified conventional styles
 - Usually poor life
- 2. "Soften" compressibility of felt
 - Maintain permeability → allow through flow
 - Minimize mid-nip void volume → achieve saturation easier
 - Unconventional structures in base to control mid nip performance
- 3. Maintain permeability and control void volume to reduce saturation volume
 - Conventional web structures to control permeability
 - "Crossless" base structures for void volume and compression control

1. Densified Fabric

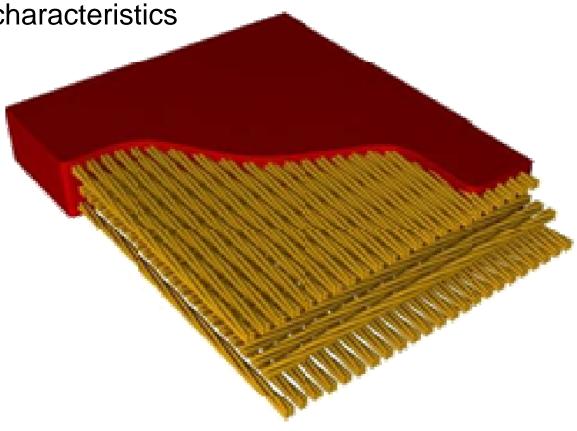
- Very dense web
- Reduced perm, reduced void volume
- Decent startup
- Poor life





Enhanced Compression

- Viscoelastic layer in felt
- Good permeability, controlled compressibility



Controlled Void Volume

 Controlled base fabric void volume

Good compression characteristics

Cleaning

- Why do nip dewatering felts clean better?
- Uhle felts -> water in and out from same side
- Nip dewatering felts → water flows through felt
 - Structure flushed better

Felt Design Summary

- Objectives
 - Optimize pressing efficiency
 - Startup
 - Over felt life
 - Maximize life
- Tools
 - Felt structure
 - Batt
 - Base
 - Other
 - Control
 - Permeability
 - Compressibility
 - Void volume (free and mid nip)

Thank You

